Aggregate a pandas DataFrame on multiple functions

Setup

# Import libraries
import pandas as pd
import seaborn as sns

# Load sample data in a DataFrame
df = sns.load_dataset('iris')[['species', 'sepal_length']]
df
species
sepal_length
0
setosa
5.1
1
setosa
4.9
2
setosa
4.7
3
setosa
4.6
4
setosa
5.0
145
virginica
6.7
146
virginica
6.3
147
virginica
6.5
148
virginica
6.2
149
virginica
5.9

Group and aggregate

If we want to get the minimum, average and maximum of sepal_length for each species, a classic way would be:

(
    df
    .groupby('species')
    .agg({'sepal_length': ['min', 'mean', 'max']})
)
sepal_length
min
species
setosa
4.3
versicolor
4.9
virginica
4.9

An alternative style for aggregation allows to aggregate the same column on multiple functions, without having to suffer the pain of multi-index columns:

(
    df
    .groupby('species')
    .agg(
        sepal_length_min=('sepal_length', 'min'),
        sepal_length_mean=('sepal_length', 'mean'),
        sepal_length_max=('sepal_length', 'max'),
    )
)
sepal_length_min
sepal_length_mean
sepal_length_max
species
setosa
4.3
5.006
5.8
versicolor
4.9
5.936
7.0
virginica
4.9
6.588
7.9